front cover of The Best of All Possible Worlds
The Best of All Possible Worlds
Mathematics and Destiny
Ivar Ekeland
University of Chicago Press, 2006

Optimists believe this is the best of all possible worlds. And pessimists fear that might really be the case. But what is the best of all possible worlds? How do we define it? Is it the world that operates the most efficiently? Or the one in which most people are comfortable and content? Questions such as these have preoccupied philosophers and theologians for ages, but there was a time, during the seventeenth and eighteenth centuries, when scientists and mathematicians felt they could provide the answer.

This book is their story. Ivar Ekeland here takes the reader on a journey through scientific attempts to envision the best of all possible worlds. He begins with the French physicist Maupertuis, whose least action principle asserted that everything in nature occurs in the way that requires the least possible action. This idea, Ekeland shows, was a pivotal breakthrough in mathematics, because it was the first expression of the concept of optimization, or the creation of systems that are the most efficient or functional. Although the least action principle was later elaborated on and overshadowed by the theories of Leonhard Euler and Gottfried Leibniz, the concept of optimization that emerged from it is an important one that touches virtually every scientific discipline today. 

Tracing the profound impact of optimization and the unexpected ways in which it has influenced the study of mathematics, biology, economics, and even politics, Ekeland reveals throughout how the idea of optimization has driven some of our greatest intellectual breakthroughs. The result is a dazzling display of erudition—one that will be essential reading for popular-science buffs and historians of science alike.

[more]

front cover of The Broken Dice, and Other Mathematical Tales of Chance
The Broken Dice, and Other Mathematical Tales of Chance
Ivar Ekeland
University of Chicago Press, 1993
Ivar Ekeland extends his consideration of the catastrophe theory of the universe begun in his widely acclaimed Mathematics and the Unexpected, by drawing on rich literary sources, particularly the Norse saga of Saint Olaf, and such current topics as chaos theory, information theory, and particle physics.

"Ivar Ekeland gained a large and enthusiastic following with Mathematics and the Unexpected, a brilliant and charming exposition of fundamental new discoveries in the theory of dynamical systems. The Broken Dice continues the same theme, and in the same elegant, seemingly effortless style, but focuses more closely on the implications of those discoveries for the rest of human culture. What are chance and probability? How has our thinking about them been changed by the discovery of chaos? What are all of these concepts good for? . . . Ah, but, I mustn't give the game away, any more than I should if I were reviewing a detective novel. And this is just as gripping a tale. . . . Beg, borrow, or preferably buy a copy. . . . I guarantee you won't be disappointed."—Ian Stewart, Science
[more]

front cover of Infinite-Dimensional Optimization and Convexity
Infinite-Dimensional Optimization and Convexity
Ivar Ekeland and Thomas Turnbull
University of Chicago Press, 1983
In this volume, Ekeland and Turnbull are mainly concerned with existence theory. They seek to determine whether, when given an optimization problem consisting of minimizing a functional over some feasible set, an optimal solution—a minimizer—may be found.
[more]

front cover of Mathematics and the Unexpected
Mathematics and the Unexpected
Ivar Ekeland
University of Chicago Press, 1988
"Not the least unexpected thing about Mathematics and the Unexpected is that a real mathematician should write not just a literate work, but a literary one."—Ian Stewart, New Scientist

"In this brief, elegant treatise, assessable to anyone who likes to think, Ivar Ekelund explains some philosophical implications of recent mathematics. He examines randomness, the geometry involved in making predictions, and why general trends are easy to project (it will snow in January) but particulars are practically impossible (it will snow from 2 p.m. to 5 p.m. on the 21st)."—Village Voice
[more]


Send via email Share on Facebook Share on Twitter